# A $\sigma $-porous set need not be $\sigma $-bilaterally porous

Commentationes Mathematicae Universitatis Carolinae (1994)

- Volume: 35, Issue: 4, page 697-703
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topNájares, R. J., and Zajíček, Luděk. "A $\sigma $-porous set need not be $\sigma $-bilaterally porous." Commentationes Mathematicae Universitatis Carolinae 35.4 (1994): 697-703. <http://eudml.org/doc/247586>.

@article{Nájares1994,

abstract = {A closed subset of the real line which is right porous but is not $\sigma $-left-porous is constructed.},

author = {Nájares, R. J., Zajíček, Luděk},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {sigma-porous; sigma-bilaterally-porous; right porous; right porosity; left porosity; sigma-bilaterally porous set; closed set},

language = {eng},

number = {4},

pages = {697-703},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {A $\sigma $-porous set need not be $\sigma $-bilaterally porous},

url = {http://eudml.org/doc/247586},

volume = {35},

year = {1994},

}

TY - JOUR

AU - Nájares, R. J.

AU - Zajíček, Luděk

TI - A $\sigma $-porous set need not be $\sigma $-bilaterally porous

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1994

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 35

IS - 4

SP - 697

EP - 703

AB - A closed subset of the real line which is right porous but is not $\sigma $-left-porous is constructed.

LA - eng

KW - sigma-porous; sigma-bilaterally-porous; right porous; right porosity; left porosity; sigma-bilaterally porous set; closed set

UR - http://eudml.org/doc/247586

ER -

## References

top- Foran J., Continuous functions need not have $\sigma $-porous graphs, Real Anal. Exchange 11 (1985-86), 194-203. (1985-86) Zbl0607.26005MR0828490
- Zajíček L., On $\sigma $-porous sets and Borel sets, Topology Appl. 33 (1989), 99-103. (1989) MR1020986
- Zajíček L., Sets of $\sigma $-porosity and sets of $\sigma $-porosity $\left(q\right)$, Časopis Pěst. Mat. 101 (1976), 350-359. (1976) Zbl0341.30026MR0457731
- Zajíček L., Porosity and $\sigma $-porosity, Real Anal. Exchange 13 (1987-88), 314-350. (1987-88) MR0943561
- Evans M.J., Humke P.D., Saxe K., A symmetric porosity conjecture of L. Zajíček, Real Anal. Exchange 17 (1991-92), 258-271. (1991-92) MR1147367

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.